
myCSoC 8032 MCU + Soft Modules

©2000 by XESS Corp. 152

{ 0x25, 0x66 }, // "4"19
{ 0x2E, 0x6D }, // "5"20
{ 0x36, 0x7D }, // "6"21
{ 0x3D, 0x07 }, // "7"22
{ 0x3E, 0x7F }, // "8"23
{ 0x46, 0x6F }, // "9"24
{ 0x45, 0x3F } // "0"25

};26
27

static void displayPs2Data() interrupt 0 using 028
{29

unsigned int i;30
unsigned char c;31

32
c = rcvData; // get the keyboard scan code33

34
// search the translation table for the scan code35
for(i=0; i<sizeof(ps2XlateTbl)/sizeof(ps2XlateEntry); i++)36

if(ps2XlateTbl[i].ps2Data == c)37
{ // found a matching scan code in the table38

 ledPort = ps2XlateTbl[i].led; // display digit39
 return;40
 }41
 42

// no matching scan code was found, so display "E"43
 ledPort = ERROR;44
}45

Once you set the compiler and linker options as you did in the previous chapter, you
can compile and link the Chap31 Keil project. Then re-enter the FastChip project
window and bind your design. Download the keyboard interface circuitry and the 8032
program in the Chap31.HEX file to your CSoC Board. Finally, use dScope to establish a
debugging link to the CSoC Board and then reset and execute the application program.
At this point, you should be able to type on the numeric keys of a keyboard attached to
the PS/2 port of your CSoC Board and see the numbers appear on the LED digit.

Design 3.2 - PS/2 Keyboard Interface Using DMA

In the previous section you built a keyboard interface that interrupts the 8032 MCU
program flow whenever a key is pressed. Keystrokes don't arrive at a very high rate so
the MCU isn't overly burdened by processing the interrupts, but this isn't true for all data
sources. For example, the UART could receive bursts of data and interrupt the 8032
thousands of times per second. Then the UART is idle until another burst arrives.
Programming the 8032 to handle the rapid bursts might be impossible, so it is better to
buffer the bursts and then let the MCU process the buffer contents at regular intervals.

myCSoC 8032 MCU + Soft Modules

©2000 by XESS Corp. 153

You could use a FIFO for this, but a FIFO that buffers more than 1000 bytes won't fit in
the CSL. You can build much larger buffers using the internal CSoC SRAM or the
external SRAM on the CSoC Board. One of the CSoC DMA controllers can manage the
transfer of bytes from the data source to the SRAM and then interrupt the MCU when
the buffer is full. In this section you will rebuild the PS/2 keyboard interface using a
DMA controller to place ten scan codes from the keyboard into a buffer in SRAM. Then
the 8032 MCU will read the buffer and display the ten keys that were pressed on the
LED digit. While this design is overkill for the application, a keyboard is a convenient
data source because you can control the arrival of keystrokes and easily see what the
CSoC is doing.

The schematic for the modified keyboard interface circuit is shown in Figure 18. Falling
edges of the ps2_clock signal strobe keyboard scan code bits from ps2_data into the
ps2_data_sreg shift register. Each rising edge of ps2_clock sets the rcv_active flip-
flop which indicates the receiver circuit is gathering data. The bit_timer counter is also
cleared whenever ps2_clock is low. Once ps2_clock stays high at the end of the scan
code transmission, the 25 MHz BusClock will have sufficient time to increment the
counter until bit bit_timer[11] goes high. This takes 211 ÷ 25 MHz = 82 µs which is
slightly longer than the 75 µs ps2_clock period. Once rcv_active and bit_time[11] are
both set, this drives the rcv_dma_comb signal high which 1) clears the rcv_active flip-
flop indicating the receiver is no longer active, and 2) sets the rcv_dmareq flip-flop.
The scan code in the shift register is loaded into the rcvData register when the
rcv_dmareq flip-flop is set, and a request to store the scan code in the buffer in SRAM
is made to a DMA controller. The rcv_dmareq flip-flop is cleared on the very next clock
cycle when bit_time[0] goes high. This is necessary because the DMA controller will
log a request for every BusClock cycle that the rcv_dmareq signal is high. The DMA
controller does a transfer for every request it logs. Because there is only one scan code
to store in the buffer, the rcv_dmareq signal should only be high for one clock cycle.

When the DMA controller gets access to the CSI bus, it raises the rcv_dmaack signal
to acknowledge the DMA request. This gates the scan code onto the CSI data bus
through the rcvDataRd buffer. The scan code travels over the CSI data bus to either
the internal or external SRAM. The DMA controller provides the address of the SRAM
location where the scan code is stored. Then the memory address pointer is
incremented and the counter that records the number of remaining transfers is
decremented. The buffer is full when the transfer counter reaches zero, and the MCU is
interrupted to process the buffer contents.

myCSoC 8032 MCU + Soft Modules

©2000 by XESS Corp. 154

ps2_clock ps2_clock_b

BusClock

GBuf0

ps2_clock_inv

ps2_data

CSI Data

rcv_dmaack

rcv_dma_comb

rcv_dmareq

rcv_dma_logic
1

1

rcv_active

s[
0]

s[
4]

s[
1]

s[
2]

s[
3]

s[
5]

s[
6]

s[
7]

s[
8]

s[
9]

bi
t_

tim
e[

10
]

bi
t_

tim
e[

11
]

bi
t_

tim
e[

8]
bi

t_
tim

e[
7]

bi
t_

tim
e[

6]
bi

t_
tim

e[
5]

bi
t_

tim
e[

9]

bi
t_

tim
e[

4]
bi

t_
tim

e[
3]

bi
t_

tim
e[

2]
bi

t_
tim

e[
1]

bi
t_

tim
e[

0]

D
clr

Q

D
clr

Q

ps2_data_sreg

rcvData

rcvDataRd

bit_timerasync

DMA Control

Figure 18: Schematic of a PS/2 keyboard interface circuit that uses DMA.

myCSoC 8032 MCU + Soft Modules

©2000 by XESS Corp. 155

The Chap31 FastChip project for the keyboard interface contains the modules shown
below. The module and signal names in the FastChip project follow those used in
Figure 18.

myCSoC 8032 MCU + Soft Modules

©2000 by XESS Corp. 156

The PS/2 keyboard clock and data signals are brought in through standard input ports
as follows:

myCSoC 8032 MCU + Soft Modules

©2000 by XESS Corp. 157

The ps2_clock signal is passed through global buffer GBuf0 so it arrives at the flip-flop
clock inputs with minimal skew. The external 25 MHz oscillator is also selected as the
source for the BusClock.

The PS/2 clock is also passed through an inverter to create the ps2_clock_b signal.

myCSoC 8032 MCU + Soft Modules

©2000 by XESS Corp. 158

The ps2_clock_b signal is used to asynchronously clear the 12-bit timer (bit_timer)
whenever the PS/2 clock is high . Otherwise, the 25 MHz BusClock increments
bit_timer.

The rcv_active module is a flip-flop that is set by any rising edge of the PS/2 clock and
cleared by a high level on the rcv_dma_comb signal.

myCSoC 8032 MCU + Soft Modules

©2000 by XESS Corp. 159

The rcv_dma_logic LUT generates the rcv_dma_comb signal whenever the
bit_time[11] and rcv_active signals are both high.

A rising edge on rcv_dma_comb sets the rcv_dmareq flip-flop. This requests a
memory transfer operation from the DMA controller. The rcv_dmareq flip-flop is
cleared by loading it with a zero when the bit_time[0] signal goes high on the next cycle
of BusClock.

The PS/2 keyboard scan code enters a 10-bit shift register on the falling edges of the
GBuf0 signal (i.e. the PS/2 clock). The most-significant bit of ps2_data_sreg carries
the least-significant bit of the keyboard data (s[0]) so the order of the signal

myCSoC 8032 MCU + Soft Modules

©2000 by XESS Corp. 160

assignments typed into the <parallel out> field is reversed:
{s[0],s[1],s[2],s[3],s[4],s[5],s[6],s[7],s[8],s[9]}.

A rising edge on the rcv_dmareq signal clocks bits s[7:0] of of the scan code into the
rcvData module. (Bits s[9:8] hold the parity and stop bit data which aren't needed by
the MCU.)

The rcv_dmareq signal is also attached to the Req input of the DMA Control module
DMA_Ctrl_A. (The DMA Control module is found under the CSI Bus entry in the Library
area of the FastChip project window.) There are two DMA controllers in the CSoC, so
DMA controller 0 is chosen to handle the keyboard interface by clicking the associated
radio button in the DMA Channel Select area of the DMA Control window. You also need

myCSoC 8032 MCU + Soft Modules

©2000 by XESS Corp. 161

to check the box to steer the DMA requests and acknowledgements between the
keyboard interface and the DMA controller circuitry.

The rcv_dmaack acknowledge signal from the DMA_Ctrl_A module enables the
rcvDataRd buffer. (The Data Read module is also found under the CSI Bus entry in the
Library area.) The rcvDataRd buffer gets its input from the outputs of the rcvData
register that hold the scan code. When rcv_dmaack goes high, the rcvData[7:0]
signals are gated through to the CSI data bus.

myCSoC 8032 MCU + Soft Modules

©2000 by XESS Corp. 162

Now you can set-up the DMA controller by clicking on the DMA 0 icon in the Dedicated
Resources area of the FastChip project window. In the DMA Channel 0 window that
appears, click on the I/O to Memory radio button in the Transfer Type area since this DMA
controller is transferring bytes from the keyboard interface to SRAM. Then check the
Increment after transfer box in the Address Generation area so that the keyboard scan code
buffer is filled starting from lower addresses and proceeding to higher addresses. Set
the buffer size to thirty bytes by typing 30 into the Number of bytes to transfer box. Once the
DMA controller buffers thirty bytes, it should re-initialize itself and begin storing scan
codes at the start of the buffer again. Select this mode of operation by checking the
Continuous initialization until reset box. Finally, the 8032 MCU should be interrupted when
the buffer is full, so check the Transfer Counter reaches 0 in the Interrupt Enables area of the
window.

Why is the buffer size set to thirty bytes if you only want to buffer ten keystrokes? The
answer is that every keystroke actually transmits three bytes: the scan code when the
key is first pressed, and then a break code followed by a repeat of the scan code when
the key is released. You haven't noticed the break code in any of your previous designs
because it goes by so fast and the scan code that follows replaces it on the display. But
the break code is there and you have to take it into account in this design.

Finally, what is the starting address of the scan code buffer in SRAM? The starting
address is specified in the 8032 source code rather than in the DMA Channel window.
You will see how to set it up later.

The 8032 MCU must be allowed to process interrupts in order for it to respond to the
interrupt from the DMA controller. Click on the Interrupts icon in the Dedicated Resources

myCSoC 8032 MCU + Soft Modules

©2000 by XESS Corp. 163

area of the FastChip project window and then check the Enable all interrupts box. Don't
enable either of the external interrupts since you don't need these in this design. The
8032 application code will enable the individual interrupt from the DMA controller.

myCSoC 8032 MCU + Soft Modules

©2000 by XESS Corp. 164

The 8032 MCU needs a means of displaying the buffered scan codes on the LED digit.
The ledPort command register placed in the external data space can be written with a
seven-bit pattern that will activate the LED segments.

Next, the seven outputs of the ledPort register are connected to seven output ports as
shown below.

myCSoC 8032 MCU + Soft Modules

©2000 by XESS Corp. 165

Finally, since the 8032 MCU code will be stored in the external SRAM, set-up the MIU
as shown below. Click on the MIU icon in the Dedicated Resources area of the project
window. This window lets you select how many address bits will be used by the MIU to
access external memory. There are only 128 KBytes of external SRAM on your CSoC
Board, so select the smallest address range in the drop-down list. This wastes one
address bit and the SRAM contents will be replicated twice within the 256 KByte
address range, but this won't cause any problems.

The modules and their interconnections have been instantiated. Now use the I/O
Editor window to assign the pins as shown in Table 12 in the previous design.

Press the Generate icon on the toolbar and FastChip will create the chap32.h header file.
The next step is to write your application code. Create a keil folder within your Chap32
FastChip project folder. Then start the Keil IDE and add the C code in Listing 8 to the
chap32 Keil project. The main routine initializes the 8032 MCU on line 5. Then the
beginning address of the scan code buffer is loaded into the source address registers of
DMA controller 0 (lines 7–9). The upper byte of the 32-bit physical address is not set
because only the lower 24 bits are decoded. The next byte is set to 0x01 which selects
the internal 16 KByte SRAM of the CSoC (as per our discussion of address mappers in
Chapter 2). The lower two bytes are set to 0x3F00 so the buffer is placed at the start of
the last page of the internal SRAM. Then the control bits that enable and initialize DMA
controller 0 are set on line 11. At this point the DMA controller is able to respond to
DMA requests from the keyboard interface. The main routine enters an infinite loop on
line 13.

All the work is actually done in the displayDMABuffer interrupt subroutine (lines 70–
88). This subroutine is called when DMA controller 0 issues an interrupt (interrupt
identifier 7). The interrupt subroutine checks the cause of the interrupt by reading the
DMA interrupt flags on line 77. The 8032 exits the subroutine if the DMA interrupt was
not a result of the transfer counter reaching zero as indicated by bit 0 in the DMAINT0
register being set. If the transfer counter has reached zero, then the buffer is filled with

myCSoC 8032 MCU + Soft Modules

©2000 by XESS Corp. 166

keyboard scan codes. The loop on lines 80–83 reads the scan codes from the buffer
and displays them on the LED digit using the displayPs2Data subroutine. The
pointer to the buffer is incremented by three on each loop iteration so as to skip the
break code and the repeated scan code that are sent out when the key is released.
After all the scan codes in the buffer are displayed, the displayDMABuffer subroutine
writes a logic 1 to the transfer counter interrupt bit which clears this interrupt. Then
control passes from the interrupt subroutine and returns to the infinite loop in the main
routine.

The displayPs2Data subroutine is passed a scan code and searches for it in the
table defined on lines 29–42. If a matching scan code is found in the table, the
subroutine writes the associated LED segment activation pattern to the ledPort register
(line 54). After the digit is displayed, the wait subroutine on lines 18–24 is called.
wait uses the watchdog timer to insert a delay of 1/3 of a second. Upon returning to
displayPs2Data, the LED segments are all turned off (line 56) and another 1/3
second interval is inserted. The blanked LED makes it easier to separate the buffer
entries as they are displayed so you can count the number of scan codes in the buffer.

Listing 8: Keyboard interface interrupt-handling code.
#include "..\Chap32.h"1

2
main()3
{4

Chap32_INIT();5
6

DMASADR0_0 = 0x00; // DMA buffer starts7
DMASADR0_1 = 0x3F; // at address 0x3F008
DMASADR0_2 = 0x01; // in 16 KByte internal SRAM9

10
DMACTRL0_0 |= 0x06; // enable and initialize DMA channel 011

12
while(1); // wait for DMA interrupts13

}14
15
16

// use the watchdog timer to wait for about 1/3 second17
static void wait()18
{19

CKCON = 0x80; // set timeout period to 2^23 clock cycles20
TA = 0xAA; TA = 0x55; // enable timed access to WDCON21
WDCON = 0x01; // clear WDIF and reset watchdog timer22
while(WDIF==0); // wait for watchdog timer to expire23

}24
25

#define ERROR 0x79;26
27

// translate keyboard scan codes to LED segment activations28

myCSoC 8032 MCU + Soft Modules

©2000 by XESS Corp. 167

typedef struct{ unsigned char ps2Data, led; } ps2XlateEntry;29
ps2XlateEntry ps2XlateTbl[] =30
{31

{ 0x16, 0x06 }, // "1"32
{ 0x1E, 0x5B }, // "2"33
{ 0x26, 0x4F }, // "3"34
{ 0x25, 0x66 }, // "4"35
{ 0x2E, 0x6D }, // "5"36
{ 0x36, 0x7D }, // "6"37
{ 0x3D, 0x07 }, // "7"38
{ 0x3E, 0x7F }, // "8"39
{ 0x46, 0x6F }, // "9"40
{ 0x45, 0x3F } // "0"41

};42
43
44

// flash scan code key on LED digit45
static void displayPs2Data(unsigned char c)46
{47

unsigned int i;48
49

// search the translation table for the scan code50
for(i=0; i<sizeof(ps2XlateTbl)/sizeof(ps2XlateEntry); i++)51

if(ps2XlateTbl[i].ps2Data == c)52
{ // found a matching scan code in the table53

 ledPort = ps2XlateTbl[i].led; // display digit54
wait(); // for 1/3 second55

 ledPort = 0x00; // then clear display56
 wait(); // and wait 1/3 second57
 return;58
 }59
 60

// no matching scan code was found, so display "E"61
ledPort = ERROR; // display "E"62

 wait(); // for 1/3 second63
 ledPort = 0x00; // then clear display64
 wait(); // and wait 1/3 second65
}66

67
68

// display all the entries in the DMA buffer69
static void displayDMABuffer() interrupt 7 using 070
{71

unsigned char xdata* buffer;72
int i;73

74
// exit subroutine if interrupt is not caused by the75

myCSoC 8032 MCU + Soft Modules

©2000 by XESS Corp. 168

// transfer counter of DMA channel 0 reaching 076
if(!(DMAINT0 & 1)) return;77

78
// display the scan code keys stored in the DMA buffer79
for(i=0, buffer=0x3F00; i<30; i+=3,buffer+=3)80
{81

displayPs2Data(*buffer); 82
}83

84
// clear the interrupt caused when the transfer count85
// of DMA channel 0 reaches 086
DMAINT0 &= 1; // setting the bit clears it87

}88

Once you set the compiler and linker options as you did in the previous design, you can
compile and link the Chap32 Keil project. Then re-enter the FastChip project window
and bind your design. Download the keyboard interface circuitry and the 8032 program
in the Chap32.HEX file to your CSoC Board. Finally, use dScope to establish a debugging
link to the CSoC Board and then reset and execute the application program. At this
point, you should be able to type a sequence of ten numeric keys on a keyboard
attached to the PS/2 port of your CSoC Board and then see the same sequence of
numbers appear on the LED digit over an interval of about six seconds.

