
myCSoC Logic Design With Soft Modules

©2000 by XESS Corp. 59

After you make the pin assignments, the I/O Editor window will appear as follows:

Now that the pin assignments are complete, click on OK to return to the project window.
Then bind and download the timer circuit to your CSoC Board. Once the circuit is in the
CSoC Board, you can make the timer run by placing DIP switch #1 into its lower
position. You should see all sixteen hexadecimal numerals displayed repeatedly on the
CSoC LED in a 5 second loop. Raising DIP switch #1 will halt the incrementing of the
LED digit.

Design 1.4 - PS/2 Keyboard Scanner

This example creates a circuit that accepts scan codes from a keyboard attached to the
PS/2 interface of the CSoC Board. If a scan code for one of the keys "0"–"9" arrives,
then the numeral will be displayed on the LED digit of the CSoC Board.

The format of the scan code transmissions from the keyboard are shown in Figure 9.
The keyboard drives the clock and data lines. The start of a scan code transmission is
indicated by a low level on the data line at the falling edge of the clock. The eight bits of
the scan code follow on successive falling clock edges (starting with the least-significant
bit). These are followed by an odd-parity bit and then a high-level stop bit.

myCSoC Logic Design With Soft Modules

©2000 by XESS Corp. 60

PS/2 keyboard clock

PS/2 keyboard data

start
bit

stop
bit

D0 D1 D2 D3 D4 D5 D6 D7 P

Figure 9: Keyboard data transmission waveforms.

The circuitry for the keyboard scanner is shown in Figure 10. The data bits for the scan
code enter a ten-bit shift register on the falling edges of the keyboard clock. Then a
decoder converts the eight-bit scan code into seven outputs that drive an LED digit.
The LED digit will display the numeral associated with the scan code.

Note that the LED decoder in Figure 10 is not the standard seven-segment LED
decoder you have used in the previous designs. The scan codes and the keyboard
keys do not have a simple mapping. You will have to construct a decoder using the
four-input LUTs in the CSoC CSL matrix. You will see that selecting the correct subset
of scan code bits lets you get away with using only seven LUTs for the decoder.

SEGA

LUT

LUT

LUT

LUT

LUT

LUT

LUT

SEGB

SEGF
SEGE
SEGD
SEGC

SEGG

7-segment
LED decoder

10-bit shift register

ps2_data
shift direction

ps2_clock

s0 4

4

4

4

4

4

4

s8

s4
s3

s7

s2

s6

s1

s9

s5

A

GF

E

D

C

B

Figure 10: Block diagram of a PS/2 keyboard scanner.

The data bits enter the shift register starting with the least significant bit. That means bit
D0 appears on output s9 and D7 appears on output s2 after the entire scan code has
been received. The parity bit and the stop bit are output on s1 and s0, respectively, but
you can ignore those. The relationship between the keyboard key that is pressed, the
scan code bits which appear on the shift register outputs, and the activation levels for
the LED digit segments is shown in Table 4.

myCSoC Logic Design With Soft Modules

©2000 by XESS Corp. 61

Table 4: PS/2 keyboard scan codes and LED segment activations.

Shift Register Output LED Segment
Key

s2 s3 s4 s5 s6 s7 s8 s9 A B C D E F G

"1" 0 0 0 1 0 1 1 0 0 1 1 0 0 0 0

"2" 0 0 0 1 1 1 1 0 1 1 0 1 1 0 1

"3" 0 0 1 0 0 1 1 0 1 1 1 1 0 0 1

"4" 0 0 1 0 0 1 0 1 0 1 1 0 0 1 1

"5" 0 0 1 0 1 1 1 0 1 0 1 1 0 1 1

"6" 0 0 1 1 0 1 1 0 1 0 1 1 1 1 1

"7" 0 0 1 1 1 1 0 1 1 1 1 0 0 0 0

"8" 0 0 1 1 1 1 1 0 1 1 1 1 1 1 1

"9" 0 1 0 0 0 1 1 0 1 1 1 1 0 1 1

"0" 0 1 0 0 0 1 0 1 1 1 1 1 1 1 0

There are only ten rows in the table, so it might be possible to distinguish between the
ten keys using only four of the scan code bits in the shift register. It turns out that the
bits that appear on the s4, s5, s6, and s9 outputs of the shift register do uniquely
distinguish between all ten keys. Therefore, the logic equations that describe the
activation of the LED segments can all be written as functions that use only s4, s5, s6,
and s9 as inputs. From Table 4, you can write the logic equation for each LED decoder
output as shown below (the logic operators are represented as: ~ = INVERT, & = AND, |
= OR). To make the equations simpler, the decoder outputs that control segments A, B,
C, D, F, and G are written using the maxterms in their columns of Table 4. The decoder
output that drives segment E is written using the minterms in its column.

~SEGA = ~s4 & s5 & ~s6 & ~s9 | s4 & ~s5 & ~s6 & s9

~SEGB = s4 & ~s5 & s6 & ~s9 | s4 & s5 & ~s6 & ~s9

~SEGC = ~s4 & s5 & s6 & ~s9

~SEGD = ~s4 & s5 & ~s6 & ~s9 | s4 & ~s5 & ~s6 & s9 | s4 & s5 & s6 & s9

 SEGE = ~s4 & s5 & s6 & ~s9 | s4 & s5 & ~s9 | ~s4 & ~s5 & ~s6 & s9

~SEGF = ~s4 & s5 & ~s9 | s4 & ~s5 & ~s6 & ~s9 | s4 & s5 & s6 & s9

myCSoC Logic Design With Soft Modules

©2000 by XESS Corp. 62

~SEGG = ~s4 & s5 & ~s6 & ~s9 | s4 & s5 & s6 & s9 | ~s4 & ~s5 & ~s6 & s9

With all the preliminary design work done, start the FastChip software and type
Chapter1.4 in the Project Name field. Then use the Target Device area to select the E5
device in a 128-pin LQFP with a maximum clock frequency of 25 MHz. Click on OK to
get to the project window. Click on the Library icon and then drag-and-drop the following
modules:

 Place two Input and seven output I/O modules in the Programmable I/O Pins area.

 Place one shift register module in the Configurable System Logic area.

 Place seven four-input LUT modules in the Configurable System Logic area.

Your project window should now appear like the following (although some of your
modules may have different names):

myCSoC Logic Design With Soft Modules

©2000 by XESS Corp. 63

Now you can set-up the modules. Click on one of the input module icons and type
ps2_data in the Component Name field of the resulting window. That way you can
always tell what input enters your circuit through this module. Also, type ps2_data in
the <input> field to name the signal that comes out of the module. Then click on OK to
complete the set-up for this input.

Next, click on the other input module icon and set the Component Name and <input> fields
to ps2_clock. Since the clock for the shift register enters through this input, you
should also open the Input Hysteresis control and activate this option. Hysteresis will
reduce problems caused by noise on clock edges with slow transitions. Then click on
OK to complete the set-up for this input.

myCSoC Logic Design With Soft Modules

©2000 by XESS Corp. 64

To continue configuring the clock input for your circuit, click on the Clocks icon in the
project window toolbar. Click on the box to the left of GBuf0 to activate this global clock
buffer. Then click on the button and select ps2_clock as the input to the clock buffer.
The clock buffer will distribute the ps2_clock signal throughout the CSL on low-skew
wiring. Low-skew clocks are necessary for getting the shift register in your design to
operate reliably.

You will not use the BusClock signal in this design, so you don't need to change the
source for this clock from its default setting. Click on OK once you have completed the
set-up for the clock buffer.

myCSoC Logic Design With Soft Modules

©2000 by XESS Corp. 65

Click on the ShiftReg_A icon next to configure the shift register module. In the Shift Register
Width area, set the number of bits in the register to 10. Then type s in the <parallel out>
field to declare the shift register output signals s0, s1, …, s9.

Next click the box to the left of SDI to activate the serial data input to the shift register.
Then select ps2_data from the drop-down list as the signal connected to this input.

Finally, select the output of global clock buffer GBuf0 as the clock input for the shift
register. GBuf0 distributes the ps2_clock signal, so data bits on the ps2_data input
will enter the shift register correctly. Since each data bit is valid on the falling edge of
ps2_clock, you must check the box to the left of the <clock> field. This inverts the clock
input to the shift register so serial data enters on the falling edge. The inversion is
represented by a solid-red circle on the clock input to the shift register block.

Once the shift register is configured, click on OK.

myCSoC Logic Design With Soft Modules

©2000 by XESS Corp. 66

The s4, s5, s6, and s9 outputs from the shift register are inputs to the four-input LUTs.
Click on one of the LUT icons (LUT_A, for example) and connect the s4, s5, s6, and s9
signals to the I0, I1, I2, and I3 inputs, respectively, using the drop-down lists. Then type
the name of one of the signals connected to an LED segment (SEGA in this example)
into the <output> field.

Finally, type the equation for the logic function into the LUT Equation field. Rather than
using the variables s[4], s[5], s[6], and s[9], the equation must be expressed in terms
of the indices of the I0, I1, I2, and I3 inputs to the LUT, respectively. So the equation

~SEGA = ~s4 & s5 & ~s6 & ~s9 | s4 & ~s5 & ~s6 & s9

translates to

~SEGA = ~0 & 1 & ~2 & ~3 | 0 & ~1 & ~2 & 3

Enter the right-hand side of the translated equation into the LUT Equation field. Don't
worry about the logical inversion of SEGA right now. You will handle that later using the
inverter in an output buffer.

Repeat these operations for the other LUTs to generate the SEGB, SEGC, …, SEGG
signals using the logic equations shown previously.

Once all the LUTs are configured, click on one of the output module icons. Connect
one of the LUT output signals (SEGA, for example) to the output module using the drop-
down list of the <output> field. Since the SEGA equation is logically inverted, click on
the checkbox to the left of the signal name. This activates an inverter in the output
module. Next, click on the 12 mA button to increase the current capabilities of the output
module since it will be driving an LED segment. Then type the output signal name into

myCSoC Logic Design With Soft Modules

©2000 by XESS Corp. 67

the Component Name field so you can identify which output module drives which LED
segment. Then click on OK.

Repeat the steps described above for each of the SEGB, SEGC, SEGD, SEGF, and
SEGB outputs. Also use the same steps for the SEGE output except do not activate
the output inverter as it is not required by this logic equation.

myCSoC Logic Design With Soft Modules

©2000 by XESS Corp. 68

Now that all the modules are internally interconnected, open the I/O Editor window and
assign I/O pins as follows:

Table 5: Pin assignments and functions for the keyboard scanner design.

Signal Pin CSoC Board Resource

ps2_clock 47 PS/2 connector clock input

ps2_data 51 PS/2 connector data input

7seg_E. SEGA 35 LED digit segment A

7seg_E. SEGB 39 LED digit segment B

7seg_E. SEGC 43 LED digit segment C

7seg_E. SEGD 41 LED digit segment D

7seg_E. SEGE 40 LED digit segment E

7seg_E. SEGF 34 LED digit segment F

7seg_E. SEG G 36 LED digit segment G

myCSoC Logic Design With Soft Modules

©2000 by XESS Corp. 69

When the pin assignments are complete, run the bind and download operations. Then
connect a keyboard with a PS/2 plug to the PS/2 connector of the CSoC Board. When
you press keys "0"–"9", you will see the corresponding numeral displayed on the LED of
the CSoC Board.

Storing Designs in the CSoC Board Flash RAM

Up to now, all your designs have been stored in the internal memory of the CSoC.
When you remove power from the CSoC Board, the CSoC configuration is lost and has
to be reloaded the next time you use the board. But the CSoC Board does have a
Flash RAM which can store the configuration even when the power is off and restore it
to the CSoC when power returns.

To store the configuration for a design in the Flash RAM, open the Download window
and select Flash Memory from the Memory Device drop-down list.

Now a Device Specification area will appear in the Download window. The Select part
name area has a drop-down list with the identifiers for many types of Flash RAM chips.
Scroll down the list and highlight AT49X001-90 to select the type of Flash RAM device
on the CSoC Board (an Atmel 1 Mbit Flash RAM with 90 ns access time).

myCSoC Logic Design With Soft Modules

©2000 by XESS Corp. 70

At this point, you could click on the OK button and the configuration file would be
programmed into the Flash RAM on your CSoC Board. However, you may find your
design operates erratically when the CSoC configures itself from the Flash RAM. That's
because you are programming the CSL without also loading a program to be executed
by the 8032 microcontroller in the CSoC. Therefore, the microcontroller will execute
whatever it finds in the Flash RAM (which is usually garbage). This can lead to strange
behavior. So you need to load a simple program into the Flash RAM that will keep the
microcontroller busy and out of trouble. I have provided a simple program in the nop
folder that keeps the microcontroller in an infinite-loop wherein it does nothing. You
should click on the Browse button in the Application Object Code area of the Download
window and steer your way into the nop folder as shown below.

Highlight the NOP.HEX file and click Open. The path to the NOP.HEX file will appear in the
Intel HEX File Name box of the Download window.

myCSoC Logic Design With Soft Modules

©2000 by XESS Corp. 71

Before initiating the download, make sure your CSoC Board is attached to the 9V DC
power supply and it is connected to the parallel port of your PC with the downloading
cable. Also check that the shunts on jumpers J8 and J9 of your CSoC Board are set for
programming the Flash RAM (see Appendix A2). Click on the Download icon on the
toolbar and then click on OK in the Download window that appears. This initiates the
downloading of the configuration file into the Flash RAM ofyour CSoC Board. FastChip
will initiate a connection to the CSoC Board, erase the Flash RAM, and then program
the Flash with the CSL circuit configuration and the microcontroller instructions in the
NOP.HEX file. You will notice that it takes longer to download into the Flash RAM than
downloading into the internal CSoC RAM.

After the Flash RAM is programmed, you can remove power from your CSoC Board.
When you restore power to your board, you will find your design is still programmed into
it. For example, the CSoC Board could display the keys pressed on a PS/2 keyboard
without first loading Design 1.4 into the board (provided you stored Design 1.4 in the
Flash RAM). That's because the CSoC automatically loads itself from the Flash RAM
whenever power is applied.

